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Neutron and proton resonances provide detailed level density information. However, due to ex-
perimental limitations, some levels are missed and some are assigned incorrect quantum numbers.
The standard method to correct for missing levels uses the experimental widths and the Porter-
Thomas distribution. Analysis of the spacing distribution provides an independent determination
of the fraction of missing levels. We have derived a general expression for such an imperfect spacing
distribution using the maximum entropy principle and applied it to a variety of nuclear resonance
data. The problem of spurious levels has not been extensively addressed.
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I. INTRODUCTION

Nuclear level densities are extremely important for
a wide variety of phenomena, ranging from nuclear
astrophysics to radiochemical applications for stew-
ardship science. The classic method to determine
level densities is by direct counting of compound nu-
clear states. A key difficulty is that the experiments
are never perfect – some levels are not observed, and
the quantum numbers of some levels are misassigned.
These are usually called the missing level and spuri-
ous level problems. The solutions – that is, the at-
tempts to complete and/or to purify the data sets
– all assume that the underlying distributions obey
the Gaussian Orthogonal Ensemble (GOE) version of
Random Matrix Theory (RMT).

For the missing level problem, the standard ap-
proach assumes (1) that the underlying strength dis-
tribution is a Porter-Thomas (PT) distribution [1]
and (2) that all of the levels with strengths below
some threshold value are missed and that all of the
levels with strengths above the cutoff value are ob-
served. From the observed (incomplete) PT distri-
bution, the fraction of missing levels is determined.
This method works well as long as the behavior is
purely statistical. Non-statistical phenomena (e.g.,
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doorway states) can have a major impact on the ob-
served distribution and lead to an incorrect missing
level correction. We have developed a method that
uses the measured spacing distributions (for which
the effects of non-statistical phenomena are minimal)
to determine the missing level correction [2, 3]. In
RMT the spacings are independent of the widths and
thus can provide independent tests for missing and
spurious levels. Using the principle of maximum en-
tropy, we have obtained the probability distribution
for imperfect eigenvalue sequences. The derivation
of this distribution is summarized in Section II. Re-
cently Bohigas and Pato [4] have generalized our re-
sults.

The spurious level problem has generally been
treated very differently than the missing level prob-
lem: the focus for spurious levels has been on whether
or not an individual level belongs to the primary data
set under consideration, rather than the overall char-
acterization of the data set. For instance, in the stan-
dard neutron total cross section measurements, there
is no clear signature that indicates the resonance `
or J value. To determine the ` value a Bayesian
probabilistic approach is used [5]. This method is
based on the fact that (for low energy neutron res-
onances) the difference in penetrabilities for s- and
p-wave resonances is large, and thus the means of the
PT distributions for the two types of resonances are
very different. This method works well in general,
but is not reliable near the a priori probability value
that divides the s- and p-wave resonances: strong
p-wave resonances and weak s-wave resonances are
often misidentified and are therefore likely to result
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in spurious levels. Non-statistical effects may also
distort the analysis.

We adopted a simple test that returns the focus
to individual levels. The most striking character-
istic of the nearest-neighbor spacing distribution is
level repulsion. Since states of the same symmetry
only rarely occur very close together, one can use
small experimental spacings as a signature of spuri-
ous levels. One of the two levels used to determine
the anomalous spacing is likely to be spurious. We
have quantified this simple approach and applied it
to resonance data. [6]

II. STANDARD WIDTH CORRECTION
METHOD

The Gaussian assumption for the distribution
of reduced width amplitudes leads to the Porter-
Thomas distribution for the dimensionless strength
parameter y:

P (y) =
1√
2πy

e−
y
2 , (1)

where y ≡ γ2/〈γ2〉, γ2 is the reduced width, and
〈γ2〉 is the average reduced width. One assumes that
all levels weaker than the weakest observed level are
missed and that all levels with larger widths are ob-
served. A modified PT distribution was introduced
by Fröhner [7]:

PF (y) =





0 : y < y0

1
erfc

(√
y0/2

) e−y/2√
2πy

: y ≥ y0 (2)

The term involving the complementary error func-
tion ensures that the distribution is normalized to a
total probability of one. Maximizing the likelihood
function constructed from the modified PT distribu-
tion yields the equation

〈γ2〉 = 〈γ2〉obs

(
1 +

√
2y0

π

e−y0/2

erfc
√

y0/2

)−1

. (3)

The solution to this equation can be obtained iter-
atively as described in Ref. [3] and yields the most
likely value for the average reduced width 〈γ2〉; that
in turn can be used to determine the observed frac-
tion of levels f .

This method works fairly well in the absence of
non-statistical effects. However, if non-statistical ef-
fects such as doorway states are present, the result is
that the average value of the reduced widths is over-
estimated and the cutoff parameter y0 is therefore too
small. If the non-statistical effect is well understood,
then it can be quantified and removed from the data
set before analysis. However, even in favorable cases

this is often difficult to achieve, and in many cases
the origin of the anomaly is not understood. In or-
der to improve the reliability of the analysis and to
provide an independent test, we developed a method
based on the spacing distribution.

III. NEW SPACING CORRECTION
METHOD

The energies of nuclear resonances with the same
quantum numbers form a GOE eigenvalue sequence.
The nearest-neighbor spacings of perfect GOE se-
quences are to a good approximation described by
the Wigner distribution [8]

PGOE(x) =
πx

2
e−πx2/4, (4)

where x ≡ S/D, S is a spacing between adjacent lev-
els and D is the average spacing. We need the spacing
distribution of an incomplete (imperfect) sequence.
Because the positions of missing levels are random,
the spacing distribution is affected by missing levels
in a more complicated way than is the width distri-
bution.

Some of the nearest-neighbor levels in the imper-
fect sequence are not actual nearest neighbors, due
to missing levels between the observed levels. Thus
the nearest-neighbor spacing distribution for the im-
perfect sequence reflects the presence of higher order
spacing distributions. The observed nearest-neighbor
spacing distribution (NNSD) for an imperfect se-
quence can be written as

P (z) =
∞∑

k=0

akλP (k;λz). (5)

The parameter z is defined as z ≡ fx, where f is
the observed fraction of levels (f = Nobserved/Ntrue).
The parameters ak give the relative contributions
of the k-th nearest-neighbor spacing distributions
P (k;λz). λ is a parameter that characterizes the
incompleteness of the sequence.

The detailed derivation of the NNSD for imperfect
sequences is given in [3]. Here we present only a
brief outline of the derivation. We require that the
distribution P (z) has total probability 1 and that the
average value of z is 1. The functions P (k; λz) also
must be normalized to 1 and must have an average
value k + 1 when expressed in terms of the variable
x. Combining these relations yields two constraints:

∞∑

k=0

ak = 1,

∞∑

k=0

ak(k + 1) = λ. (6)
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To determine the coefficients ak we define an en-
tropy

S{ak} = −
∞∑

k=0

ak ln ak. (7)

We wish to find the values {ak} that maximize S
subject to the constraints in Eqs. (6). We utilize two
Lagrange multipliers α and β to account for the two
constraints. Maximizing the entropy requires that

δ{−
∞∑

k=0

ak ln ak−α

∞∑

k=0

ak−β

∞∑

k=0

(k+1)ak} = 0. (8)

The values that maximize the entropy are ak = f(1−
f)k and λ = 1/f .

Combining these results yields the final expression

P (x) =
∞∑

k=0

f(1− f)kP (k; x). (9)

This result is general and therefore applies to any
of the ensembles of RMT. To choose a particular en-
semble requires specifying the appropriate P (k; x) for
that ensemble. P(0;x) is the Wigner distribution,
P(1;x) and P(2;x) are determined by interpolations
of numerical data and P (k;x) for k≥3 are approxi-
mated by Gaussians centered at k + 1 with the ap-
propriate variances. Although we have worked out
the details for all three of the standard Gaussian en-
sembles (Orthogonal, Unitary, and Symplectic), with
one exception our applications have all been to nu-
clear resonances and the GOE version of RMT.

Since the spacing analysis was new and thus un-
proven, we tested the analysis method on numerically
generated data with very good statistics. To test the
spacing distribution function we generated GOE se-
quences and then randomly removed a fraction 1 -
f of the levels. We used the maximum likelihood
method – the likelihood function is L = ΠiP (xi),
where the product is over all spacings in the sequence.
The most probable value of f is the one that max-
imizes the likelihood function, and the uncertainty
in f is the deviation from the most likely value of f
when ln L has decreased by 0.5 from its maximum
value. These tests led to excellent agreement with
the known values of missing levels.

IV. COMPARISON WITH DATA

We first considered data that our group had pre-
viously measured; we examined a sequence of proton
resonances in 48Ti(p,p) with spin and parity 1/2+.
These data were considered to be of high quality and
displayed no anomalous effects. We analyzed these
data with both the standard width correction method
and the new spacing correction method. The results

were fwidth = 0.87+0.13
−0.11 and fspacing = 0.88±0.07.

The results were in excellent agreement with each
other and led to a weighted average value of f =
0.88±0.06. Even in this case where the two methods
agreed very well with each other, the result is a value
in which there is greater confidence and has a smaller
uncertainty.

The presence of non-statistical effects has a severe
impact. The additional strength added to the (true)
background strength by a doorway state may signif-
icantly increase the average reduced width 〈γ2〉, and
thus incorrectly decrease the cutoff value y0. The
net result is that the number of missing levels in un-
derestimated. Of course if one knows the nature of
the non-statistical effect, then this contribution can
be evaluated and subtracted before performing the
missing level analysis.

In practice this works reasonably well for proton
resonances where the non-statistical effects are iso-
baric analog states.[6] However, a major problem
arises for neutron resonances. There are many non-
statistical effects observed in neutron resonances, but
there is no formal prescription that enables one to
extract a reliable value for the strength of the non-
statistical effect. Even its existence may be in ques-
tion. Due to the nature of the Porter-Thomas width
distribution, it is sometimes difficult to distinguish
between an unusually large width and a true non-
statistical effect. The precise amount of strength to
assign to the non-statistical anomaly is even more
difficult to determine. Thus the main advantage of
the spacing analysis is for neutron resonances with
possible doorways.

We illustrate this with data from the n + 238U
reaction. We consider 237 s-wave resonances iden-
tified by Olsen et al. [9, 10]. The reduced width
distribution is shown in Fig 1. Analysis using the
width correction method for the missing levels yields
f = 0.97+0.03

−0.08. The data are considered to be essen-
tially perfect, although the bulge in the integral plot
is somewhat suspicious.

We then analyzed these same 238U resonances with
the spacing correction method. The spacing distribu-
tion and its integral are shown in Fig. 2. The spacing
analysis method yields a value of f = 0.89±0.06.

The question is which of these two methods to be-
lieve – are the data essentially perfect (as implied by
the width correction method) or are there approxi-
mately 10% missing levels? A very strong indication
of which to choose is provided by inspection of the
spacing distribution in Fig. 2. There are a number
of observed spacings greater than x = 3 and some
even greater than x = 4. However, for the Wigner
distribution, the probability of x ≥ 3 is 0.001 and the
probability of x ≥ 4 is much much lower! By inspec-
tion there must be a number of missing levels. Com-
parison with numerical simulations for various values
of f suggest that an f value of about 0.9 is quite rea-
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FIG. 1: Reduced width distribution for 1/2+ resonances
in the n + 238U reaction. The dashed lines show the
truncated PT distribution for f = 0.97.
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FIG. 2: Nearest-neighbor spacing distribution for 1/2+

resonances in the n + 238U reaction. The dashed lines
show the expected behavior for f = 0.89

sonable. Performing the missing level correction with
both methods should significantly reduce errors that
result from non-statistical effects.

V. SUMMARY AND CONCLUSIONS

Assuming that the nuclear resonances behave sta-
tistically and that Random Matrix Theory describes
their behavior, then one can analyze either the width
or the spacing distribution in order to determine the

missing fraction of levels. Since the weakest levels are
missed systematically, the width correction method
is simple and transparent. The observed spacing dis-
tribution is a weighted sum of the probability dis-
tributions for two levels that have no levels between
them – P (0; x), one level between them – P (1; x),
etc. With the maximum entropy principle a gen-
eral expression for the imperfect eigenvalue distribu-
tion was obtained. Practical approximations for the
P (k;x) were obtained. In practice the spacing cor-
rection method works very well. The advantage of
this method is striking when non-statistical effects
are present, since the spacing distribution is not af-
fected by the presence of doorway states. Thus the
new correction method provides at a minimum an ad-
ditional method that helps to confirm the reliability
of the data and to reduce the uncertainty in the value
of the missing level correction. In extreme cases this
new method prevents serious errors in estimating the
fraction of missing levels.

These efforts were directed at determining the frac-
tion of missing levels in the experimental spacing
distribution. An equally interesting and even more
challenging problem is that of determining whether a
given state belongs in the sequence or whether there
is a specific level missing between two given levels.
That is, what is the information content of a state in
a correlated sequence? Consider two extremes: for a
picket fence distribution one can tell with 100% cer-
tainty that a state is missing. On the other hand
for a Poisson distribution, if a state is missing, then
the observer has no information. Any correlated se-
quence such as the RMT ensembles are somewhere
in between these two extremes.

Dyson and Mehta [11, 12] developed a statistical
mechanics of correlated spectra and obtained specific
values for many thermodynamic variables (internal
energy, specific heat, entropy, ...) for the three basic
RMT ensembles. This topic has not been consid-
ered either theoretically or experimentally. As a out-
growth of our present efforts, we initiated efforts to
examine what can be called RMT thermodynamics.
The initial results are presented in the next paper
[13].
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